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2.10. Strong law of large numbers

If X,, are i.i.d with finite mean, then the weak law asserts that n=1S,, £ E[X1]
The strong law strengthens it to almost sure convergence.

Theorem 2.36 (Kolmogorov’s SLLN). Let X, be i.i.d with E[|X1|] <oco. Then, as
S, a.s.
n — oo, we have =* = E[X1].

The proof of this theorem is somewhat complicated. First of all, we should
ask if WLLN implies SLLN? From Lemma we see that this can be done if
P (In_IS » —E[X1]| > §) is summable, for every § > 0. Even assuming finite variance
Var(X1) = 02, Chebyshev’s inequality only gives a bound of 626~2n~1 for this prob-
ability and this is not summable. Since this is at the borderline of summability, if
we assume that pth moment exists for some p > 2, we may expect to carry out this
proof. Suppose we assume that a4 := E[X ‘11] < oo (of course 4 is not the smallest num-
ber bigger than 2, but how do we compute E[|S,,|?] in terms of moments of X; unless
p is an even integer?). Then, we may compute that (assume E[X1]= 0 wlog)

E[S%] =n?(n-1%0* +nay = 0(n?).

Thus P (In"1S,| > 8) < n 46 *E[S%] = O(n~2) which is summable, and by Lemma/2.27
we get the following weaker form of SLLN.

Theorem 2.37. Let X, be i.i.d with E[|X1]*] < co. Then Sp @5 E[X1]as n — oo.

> n
Now we return to the serious question of proving the strong law under first
moment assumptions. The presentation of the following proof is adapted from a blog
article of Terence Tao.

PROOF. Step 1: It suffices to prove the theorem for integrable non-negative r.v, be-
cause we may write X = X, —X_ and note that S, =S} —S;,. (Caution: Don’t also as-
sume zero mean in addition to non-negativity!). Henceforth, we assume that X, =0
and p=E[X1] <oco. One consequence is that

(2.10) %s%s% if Ny <n<Np.
Step 2: The second step is to prove the following claim. To understand the big
picture of the proof, you may jump to the third step where the strong law is deduced
using this claim, and then return to the proof of the claim.

Snk a.s.

o E[Xilas k— co.

Proof of the claim Fix j and for 1 <k <n; write X}, =Y} +Z; where Y, =X, 1Xk5nj
and Zj, = X} 1x,>n; (Why we chose the truncation at n; is not clear at this point).
Then, let J5 be large enough so that for j = Js5, we have E[Z1] <§. Let Szj = ZZil Y:
and S% =Y’ Zj. Since S,, =S} +S% and E[X]=E[Y1]+EIZ], we get

Claim 2.38. Fix any A > 1 and define np, := (A% Then,

Sy, sy Sz
P||—Z -E[Xi]|>26| < P||—-EYil|+]| ’—E[Z1]|>26)

n; n; n;

sy SZ
< P[] ’—E[Y1]|>6)+P(| ’—E[Z1]|>6)
n; n;
sy SZ
(2.11) < P|| n’—E[Y1]|>6)+P( "’;eo).

n; nj
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We shall show that both terms in (2.11) are summable over j. The first term can be
bounded by Chebyshev’s inequality

(2.12) P |S—Z" ~E[Y1]|>6]< L oy L EIXP1x,., )
) n; - 52nj 1 62nj 1o&u=n -
while the second term is bounded by the union bound
SZ
(2.13) P(l ;éo) <n;P(X1>n)).
nj

The right hand sides of (2.12) and (2.13) are both summable. To see this, observe
that for any positive x, there is a unique %k such that np <x <ng,1, and then

o 1 9 9 © 1 0 k.
(2.14) (a) Z —xLycp, Sx Z — < Cx. () Z njlysy; < Z A < C)x.
=R s M j=1 i=1
Here, we may take C) = %, but what matters is that it is some constant depending
on A (but not on x). We have glossed over the difference between [A/] and A/ but
you may check that it does not matter (perhaps by replacing C, with a larger value).

Setting x = X1 in the above inequalities (a) and (b) and taking expectations, we get

(e 0] 1 [e.e]
Z ;E[X%lxlsnj]SC;LE[Xl]. anP(X1>nj)SC,lE[X1].
j=1"j J=1

As E[X1] < 0o, the probabilities on the left hand side of (2.12) and (2.13) are sum-
Sh.
L -E[X1]|> 26) is summable. This

nj

mable in j, and hence it also follows that P |

Sy
L %3 B[X;] a.s. This

nj

happens for every § > 0 and hence Lemma [2.27|implies that

proves the claim.
Step 3: Fix A > 1. Then, for any n, find % such that A* < n < A**1 and then, from

(2.10) we get

1 S S
ZE[X;] <liminf—= <limsup — < AE[X;], almost surely.
A n—oo n n—oo N

Take intersection of the above event over all 1 =1+ %, m =1 to get lim,,_. Sn—”
E[X1] a.s.

2.11. Kolmogorov’s zero-one law

We saw that in strong law the limit of n1S, turned out to be constant, while
a priori, it could well have been random. This is a reflection of the following more
general and surprising fact.

Definition 2.39. Let %, be sub-sigma algebras of &. Then the tail o-algebra of the
sequence %, is defined to be I := N, 0 (Up>,F1). For a sequence of random variables
X1,Xo,..., the tail sigma algebra is the tail of the sequence o(X},).

We also say that a o-algebra is trivial (w.r.t a probability measure) if P(A) equals
0 or 1 for every A in the sig-algebra.
Theorem 2.40 (Kolmogorov’s zero-one law). Let (12, % ,P) be a probability space.

(1) If &, is a sequence of independent sub-sigma algebras of &, then the tail
sig-algebra is trivial.
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(2) If X, are independent random variables, and A is a tail event, then P(A) is
O0or1forevery AcT.

PROOF. The second statement follows immediately from the first. To prove
the first, define 9, := 0 (Up>,F). Then, 1,...,%,,9, are independent. Hence,
F1,...,%,,9 areindependent. Since this is true for every n, we see that I, %1, %o,...
are independent. Hence, 9 and o(U,%,) are independent. But I < o(uU,%,),
hence, J is independent of itself. This implies that for any A € 9, we must have
P(A)2 =P(ANA)=P(A) which forces P(A4) to be 0 or 1. [ ]

Exercise 2.41. Let X; be independent random variables. Which of the following
random variables must necessarily be constant almost surely? limsup X,,, liminfX,,,
limsupn’lSn, liminfS,,.

An application: This application is really an excuse to introduce a beautiful object
of probability. Consider the lattice Z2, points of which we call vertices. By an edge
of this lattice we mean a pair of adjacent vertices {(x,y),(p,q)} where x = p,|y—q|=1
or y=gq,|lx—p|=1. Let E denote the set of all edges. X,, e € E be i.i.d Ber(p) random
variables indexed by E. Consider the subset of all edges e for which X, = 1. This
gives a random subgraph of Z2 called the bond percolation at level p. We denote the
subgraph by G,.t

Question: What is the probability that in the percolation subgraph, there is an
infinite connected component?

Let A = {w : G, has an infinite connected component}. If there is an infinite
component, changing X, for finitely many e cannot destroy it. Conversely, if there
was no infinite cluster to start with, changing X, for finitely many e cannot cre-
ate one. In other words, A is a tail event for the collection X,, e € E! Hence, by
Kolmogorov’s 0-1 law, P, (A) is equal to 0 or 1. Is it 0 or is it 1?

In pathbreaking work, it was proved by 1980s that P,(A) = 0 if p < % and
P,(A)=1if p> 1.

The same problem can be considered on Z3, keeping each edge with probability
p and deleting it with probability 1 — p, independently of all other edges. It is again
known (and not too difficult to show) that there is some number p. € (0,1) such that
P,(A)=0if p<p. and P,(A) =1if p > p.. The value of p. is not known, and more
importantly, it is not known whether P, (A) is 0 or 1!

2.12. The law of iterated logarithm

If a, 1 oo, then the reasoning in the previous section applies and limsupa;'S,
is constant a.s. This motivates the following natural question.

Question: Let X; be i.i.d random variables taking values +1 with equal probability.
Find a, so that limsup ‘s—n =1a.s.

The question is about the growth rate of sums of random independent +1s. We
know that n~1S, %o by the SLLN, hence, a,, = n is “too much”. What about n%. Ap-
plying Hoeffding’s inequality (proved in the next section), we see that P(n™%S,, > ¢) <
exp{—%t2n2“‘1}. If a> %, this is a summable sequence for any ¢ > 0, and therefore
P(n™%S,, > ti.0.)=0. That is limsupn™%S, 250 for a > % What about a = %? One
can show that limsup n-28 n = +oo a.s, which means that /7 is too slow compared
to S,. So the right answer is larger than /n but smaller than n3+e for any € > 0.
The sharp answer, due to Khinchine is a crown jewel of probability theory!
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Result 2.42 (Khinchine’s law of iterated logarithm). Let X; be i.i.d with zero
mean and finite variance o2 = 1 (without loss of generality). Then,

S
lim sup z =+1a.s.

n—oo +/2nloglogn

In fact the set of all limit points of the sequence {
to the interval [—1,1].

Sn

v/2nloglogn

} is almost surely equal

We skip the proof of LIL, because it is a bit involved, and there are cleaner ways
to deduce it using Brownian motion (in this or a later course).

Exercise 2.43. Let X; be i.i.d random variables taking values +1 with equal proba-

- . Sn
—Pn <
bility. Show that 11& solgp T 1, almost surely.

2.13. Hoeffding’s inequality

If X, are i.i.d with finite mean, then we know that the probability for S,/n to be
more than § away from its mean, goes to zero. How fast? Assuming finite variance,
we saw that this probability decays at least as fast as n~!. If we assume higher
moments, we can get better bounds, but always polynomial decay in n. Here we

assume that X, are bounded a.s, and show that the decay is like a Gaussian.

Lemma 2.44. (Hoeffding’s inequality). Let X;,...,X, be independent, and as-
sume that | X| < dp w.p.1. For simplicity assume that E[X;]=0. Then, for any n =1
and any t >0,

£2
P(|Sn| = t)s2exp{—m}.
Remark 2.45. The boundedness assumption on X;s is essential. That E[X;] =0 is
for convenience. If we remove that assumption, note that Y, = X, —E[X}] satisfy the
assumptions of the theorem, except that we can only say that |Y;| < 2d; (because
|X%| < dp, implies that |[E[X}]| < dj and hence | X, —E[X}]| < 2d}). Thus, applying
the result to Y s, we get

t2
P(S,-E[S,ll=zt)<2 -——s -
(IS, —ELSpllz?) exp{ Szg‘zldﬁ}

PROOF. Without loss of generality, take E[X,] = 0. Now, if |X| <d w.p.1, and
E[X] =0, by convexity of exponential on [-1,1], we write for any A >0

X\ ( X) )Ld)
1+— 1-— .
> +d)e +[1-2)e

Therefore, taking expectations we get E[exp{AX}] < cosh(Ad). Take X = X}, d =d;,
and multiply the resulting inequalities and use independence to get E[exp{AS,}] <
[1;_, cosh(Ady). Apply the elementary inequality cosh(x) < exp(x2/2) to get

1
M o<

Elexp{AS,} < exp{ %ﬁ Y dz } :
k=1
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From Markov’s inequality we thus get P(S,, > ¢) < e ME[e""] < exp {1t + 12 hq di}.
Optimizing this over A gives the choice 1 = +¢12 and the inequality
k=1"%

2
P(S,=t)<ex -_—— (-
S z0sen| i |
Working with —X}, gives a similar inequality for P(-S,, > ¢) and adding the two we
get the statement in the lemma. |

The power of Hoeffding’s inequality is that it is not an asymptotic statement
but valid for every finite n and finite £. Here are two consequences. Let X; be i.i.d
bounded random variables with P(|X1|<d)=1.

(1) (Large deviation regime) Take ¢ = nd to get

1 2
P(I=S, —EXil=u|=P(S, —E[S,]l = u) < Zexp{—u—n}.
n 8d?2

This shows that for bounded random variables, the probability for the sam-

ple sum S, to deviate by an order n amount from its mean decays exponen-

tially in n. This is called the large deviation regime because the order of the

deviation is the same as the typical order of the quantity we are measuring.
(2) (Moderate deviation regime) Take ¢t = u\/n to get

2
P (IS, —EIS, ]| z@)szexp{—s%}.
This shows that S,, is within a window of size \/n centered at E[S,]. In
this case the probability is not decaying with n, but the window we are
looking at is of a smaller order namely, /n, as compared to S,, itself, which
is of order n. Therefore this is known as moderate deviation regime. The
inequality also shows that the tail probability of (S, —E[S,1)/v/n is bounded
by that of a Gaussian with variance d. More generally, if we take ¢t = un®

u2 a—
with a € [1/2,1), we get P(IS,, — E[S, ]| = un®) < 2~ 77"

As Hoeffding’s inequality is very general, and holds for all finite n and ¢, it is not
surprising that it is not asymptotically sharp. For example, CLT will show us that
(S, —EIS,)/vn 4, N(0,02) where o2 = Var(X1). Since 02 < d, and the N(0,02) has
tails like e~%*/20” , Hoeffding’s is asymptotically (as u — oco) not sharp in the moderate
regime. In the large deviation regime, there is well studied theory. A basic result
there says that P(1S, —E[S,1| > nu) ~ e {® where the function I(x) can be written
in terms of the moment generating function of X;. It turns out that if |X;| < d,
then I(u) is larger than u?/2d which is what Hoeffding’s inequality gave us. Thus
Hoeffding’s is asymptotically (as n — oco) not sharp in the large deviation regime.

2.14. Random series with independent terms

In law of large numbers, we considered a sum of n terms scaled by n. A natural
question is to ask about convergence of infinite series with terms that are indepen-
dent random variables. Of course Y X, will not converge if X; are i.i.d (unless X; =0
a.s!). Consider an example.

Example 2.46. Let a, bei.i.d with finite mean. Important examples are a, ~ N(0,1)
or a, = +1 with equal probability. Then, define f(z) = Y ,a,2". What is the ra-
dius of convergence of this series? From the formula for radius of convergence



