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2.10. Strong law of large numbers

If Xn are i.i.d with finite mean, then the weak law asserts that n−1Sn
P→E[X1].

The strong law strengthens it to almost sure convergence.

Theorem 2.36 (Kolmogorov’s SLLN). Let Xn be i.i.d with E[|X1|] <∞. Then, as
n →∞, we have Sn

n
a.s.→ E[X1].

The proof of this theorem is somewhat complicated. First of all, we should
ask if WLLN implies SLLN? From Lemma 2.27 we see that this can be done if
P

(
|n−1Sn −E[X1]| > δ

)
is summable, for every δ> 0. Even assuming finite variance

Var(X1) = σ2, Chebyshev’s inequality only gives a bound of σ2δ−2n−1 for this prob-
ability and this is not summable. Since this is at the borderline of summability, if
we assume that pth moment exists for some p > 2, we may expect to carry out this
proof. Suppose we assume that α4 :=E[X4

1]<∞ (of course 4 is not the smallest num-
ber bigger than 2, but how do we compute E[|Sn|p] in terms of moments of X1 unless
p is an even integer?). Then, we may compute that (assume E[X1]= 0 wlog)

E
[
S4

n
]
= n2(n−1)2σ4 +nα4 =O(n2).

Thus P
(
|n−1Sn| > δ

)
≤ n−4δ−4E[S4

n]=O(n−2) which is summable, and by Lemma 2.27
we get the following weaker form of SLLN.

Theorem 2.37. Let Xn be i.i.d with E[|X1|4]<∞. Then, Sn
n

a.s.→ E[X1] as n →∞.
Now we return to the serious question of proving the strong law under first

moment assumptions. The presentation of the following proof is adapted from a blog
article of Terence Tao.

PROOF. Step 1: It suffices to prove the theorem for integrable non-negative r.v, be-
cause we may write X = X+−X− and note that Sn = S+

n−S−
n . (Caution: Don’t also as-

sume zero mean in addition to non-negativity!). Henceforth, we assume that Xn ≥ 0
and µ=E[X1]<∞. One consequence is that

(2.10)
SN1

N2
≤ Sn

n
≤

SN2

N1
if N1 ≤ n ≤ N2.

Step 2: The second step is to prove the following claim. To understand the big
picture of the proof, you may jump to the third step where the strong law is deduced
using this claim, and then return to the proof of the claim.

Claim 2.38. Fix any λ> 1 and define nk := &λk'. Then,
Snk
nk

a.s.→ E[X1] as k →∞.

Proof of the claim Fix j and for 1≤ k ≤ n j write Xk =Yk+Zk where Yk = Xk1Xk≤n j
and Zk = Xk1Xk>n j (why we chose the truncation at n j is not clear at this point).
Then, let Jδ be large enough so that for j ≥ Jδ, we have E[Z1]≤ δ. Let SY

n j =
∑n j

k=1 Yk

and SZ
n j =

∑n j
k=1 Zk. Since Sn j = SY

n j +SZ
n j and E[X1]=E[Y1]+E[Z1], we get

P
( ∣∣ Sn j

n j
−E[X1]

∣∣> 2δ
)

≤ P
(
∣∣

SY
n j

n j
−E[Y1]

∣∣+
∣∣

SZ
n j

n j
−E[Z1]

∣∣> 2δ

)

≤ P
(
∣∣

SY
n j

n j
−E[Y1]

∣∣> δ
)

+P
(
∣∣

SZ
n j

n j
−E[Z1]

∣∣> δ
)

≤ P
(
∣∣

SY
n j

n j
−E[Y1]

∣∣> δ
)

+P
(

SZ
n j

n j
(= 0

)

.(2.11)
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We shall show that both terms in (2.11) are summable over j. The first term can be
bounded by Chebyshev’s inequality

(2.12) P
(
∣∣

SY
n j

n j
−E[Y1]

∣∣> δ
)

≤ 1
δ2n j

E[Y 2
1 ]= 1

δ2n j
E[X2

11X1≤n j ].

while the second term is bounded by the union bound

(2.13) P
(

SZ
n j

n j
#= 0

)

≤ n jP(X1 > n j).

The right hand sides of (2.12) and (2.13) are both summable. To see this, observe
that for any positive x, there is a unique k such that nk < x ≤ nk+1, and then

(2.14) (a)
∞∑

j=1

1
n j

x21x≤n j ≤ x2
∞∑

j=k+1

1
λ j ≤ Cλx. (b)

∞∑

j=1
n j1x>n j ≤

k∑

j=1
λ j ≤ Cλx.

Here, we may take Cλ = λ
λ−1 , but what matters is that it is some constant depending

on λ (but not on x). We have glossed over the difference between %λ j& and λ j but
you may check that it does not matter (perhaps by replacing Cλ with a larger value).
Setting x = X1 in the above inequalities (a) and (b) and taking expectations, we get

∞∑

j=1

1
n j

E[X2
11X1≤n j ]≤ CλE[X1].

∞∑

j=1
n jP(X1 > n j)≤ CλE[X1].

As E[X1] < ∞, the probabilities on the left hand side of (2.12) and (2.13) are sum-

mable in j, and hence it also follows that P
( ∣∣ Sn j

n j
−E[X1]

∣∣> 2δ
)

is summable. This

happens for every δ > 0 and hence Lemma 2.27 implies that
Sn j
n j

a.s.→ E[X1] a.s. This
proves the claim.
Step 3: Fix λ > 1. Then, for any n, find k such that λk < n ≤ λk+1, and then, from
(2.10) we get

1
λ

E[X1]≤ liminf
n→∞

Sn

n
≤ limsup

n→∞

Sn

n
≤λE[X1], almost surely.

Take intersection of the above event over all λ = 1+ 1
m , m ≥ 1 to get limn→∞

Sn
n =

E[X1] a.s. ■

2.11. Kolmogorov’s zero-one law

We saw that in strong law the limit of n−1Sn turned out to be constant, while
a priori, it could well have been random. This is a reflection of the following more
general and surprising fact.

Definition 2.39. Let Fn be sub-sigma algebras of F . Then the tail σ-algebra of the
sequence Fn is defined to be T :=∩nσ (∪k≥nFk). For a sequence of random variables
X1, X2, . . ., the tail sigma algebra is the tail of the sequence σ(Xn).

We also say that a σ-algebra is trivial (w.r.t a probability measure) if P(A) equals
0 or 1 for every A in the sig-algebra.

Theorem 2.40 (Kolmogorov’s zero-one law). Let (Ω,F ,P) be a probability space.
(1) If Fn is a sequence of independent sub-sigma algebras of F , then the tail

sig-algebra is trivial.
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(2) If Xn are independent random variables, and A is a tail event, then P(A) is
0 or 1 for every A ∈T .

PROOF. The second statement follows immediately from the first. To prove
the first, define Tn := σ (∪k>nFk). Then, F1, . . . ,Fn,Tn are independent. Hence,
F1, . . . ,Fn,T are independent. Since this is true for every n, we see that T ,F1,F2, . . .
are independent. Hence, T and σ (∪nFn) are independent. But T ⊂ σ (∪nFn),
hence, T is independent of itself. This implies that for any A ∈ T , we must have
P(A)2 =P(A∩ A)=P(A) which forces P(A) to be 0 or 1. ■

Exercise 2.41. Let Xi be independent random variables. Which of the following
random variables must necessarily be constant almost surely? limsup Xn, liminf Xn,
limsupn−1Sn, liminfSn.

An application: This application is really an excuse to introduce a beautiful object
of probability. Consider the lattice Z2, points of which we call vertices. By an edge
of this lattice we mean a pair of adjacent vertices {(x, y), (p, q)} where x = p, |y−q| = 1
or y= q, |x− p| = 1. Let E denote the set of all edges. Xe, e ∈ E be i.i.d Ber(p) random
variables indexed by E. Consider the subset of all edges e for which Xe = 1. This
gives a random subgraph of Z2 called the bond percolation at level p. We denote the
subgraph by Gω.t

Question: What is the probability that in the percolation subgraph, there is an
infinite connected component?

Let A = {ω : Gω has an infinite connected component}. If there is an infinite
component, changing Xe for finitely many e cannot destroy it. Conversely, if there
was no infinite cluster to start with, changing Xe for finitely many e cannot cre-
ate one. In other words, A is a tail event for the collection Xe, e ∈ E! Hence, by
Kolmogorov’s 0-1 law, Pp(A) is equal to 0 or 1. Is it 0 or is it 1?

In pathbreaking work, it was proved by 1980s that Pp(A) = 0 if p ≤ 1
2 and

Pp(A)= 1 if p > 1
2 .

The same problem can be considered on Z3, keeping each edge with probability
p and deleting it with probability 1− p, independently of all other edges. It is again
known (and not too difficult to show) that there is some number pc ∈ (0,1) such that
Pp(A) = 0 if p < pc and Pp(A) = 1 if p > pc. The value of pc is not known, and more
importantly, it is not known whether Ppc (A) is 0 or 1!

2.12. The law of iterated logarithm

If an ↑∞, then the reasoning in the previous section applies and limsupa−1
n Sn

is constant a.s. This motivates the following natural question.
Question: Let Xi be i.i.d random variables taking values ±1 with equal probability.
Find an so that limsup Sn

an
= 1 a.s.

The question is about the growth rate of sums of random independent ±1s. We
know that n−1Sn

a.s.→ 0 by the SLLN, hence, an = n is “too much”. What about nα. Ap-
plying Hoeffding’s inequality (proved in the next section), we see that P(n−αSn > t)≤
exp{− 1

2 t2n2α−1}. If α > 1
2 , this is a summable sequence for any t > 0, and therefore

P(n−αSn > t i.o.) = 0. That is limsupn−αSn
a.s.→ 0 for α > 1

2 . What about α = 1
2 ? One

can show that limsupn− 1
2 Sn = +∞ a.s, which means that

+
n is too slow compared

to Sn. So the right answer is larger than
+

n but smaller than n
1
2+ε for any ε > 0.

The sharp answer, due to Khinchine is a crown jewel of probability theory!
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Result 2.42 (Khinchine’s law of iterated logarithm). Let Xi be i.i.d with zero
mean and finite variance σ2 = 1 (without loss of generality). Then,

limsup
n→∞

Sn√
2n loglogn

=+1 a.s.

In fact the set of all limit points of the sequence
{

Sn#
2n loglogn

}
is almost surely equal

to the interval [−1,1].

We skip the proof of LIL, because it is a bit involved, and there are cleaner ways
to deduce it using Brownian motion (in this or a later course).

Exercise 2.43. Let Xi be i.i.d random variables taking values ±1 with equal proba-
bility. Show that limsup

n→∞
Sn#

2n loglogn
≤ 1, almost surely.

2.13. Hoeffding’s inequality

If Xn are i.i.d with finite mean, then we know that the probability for Sn/n to be
more than δ away from its mean, goes to zero. How fast? Assuming finite variance,
we saw that this probability decays at least as fast as n−1. If we assume higher
moments, we can get better bounds, but always polynomial decay in n. Here we
assume that Xn are bounded a.s, and show that the decay is like a Gaussian.

Lemma 2.44. (Hoeffding’s inequality). Let X1, . . . , Xn be independent, and as-
sume that |Xk|≤ dk w.p.1. For simplicity assume that E[Xk] = 0. Then, for any n ≥ 1
and any t > 0,

P (|Sn|≥ t)≤ 2exp

{

− t2

2
∑n

i=1 d2
i

}

.

Remark 2.45. The boundedness assumption on Xks is essential. That E[Xk] = 0 is
for convenience. If we remove that assumption, note that Yk = Xk−E[Xk] satisfy the
assumptions of the theorem, except that we can only say that |Yk| ≤ 2dk (because
|Xk| ≤ dk implies that |E[Xk]| ≤ dk and hence |Xk −E[Xk]| ≤ 2dk). Thus, applying
the result to Yks, we get

P (|Sn −E[Sn]|≥ t)≤ 2exp

{

− t2

8
∑n

i=1 d2
i

}

.

PROOF. Without loss of generality, take E[Xk] = 0. Now, if |X | ≤ d w.p.1, and
E[X ]= 0, by convexity of exponential on [−1,1], we write for any λ> 0

eλX ≤ 1
2

((
1+ X

d

)
e−λd +

(
1− X

d

)
eλd

)
.

Therefore, taking expectations we get E[exp{λX }] ≤ cosh(λd). Take X = Xk, d = dk
and multiply the resulting inequalities and use independence to get E[exp{λSn}] ≤∏n

k=1 cosh(λdk). Apply the elementary inequality cosh(x)≤ exp(x2/2) to get

E[exp{λSn}]≤ exp

{
1
2
λ2

n∑

k=1
d2

k

}

.
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From Markov’s inequality we thus get P(Sn > t)≤ e−λtE[eλSn ]≤ exp
{
−λt+ 1

2λ
2 ∑n

k=1 d2
k
}
.

Optimizing this over λ gives the choice λ= t∑n
k=1 d2

k
and the inequality

P (Sn ≥ t)≤ exp

{

− t2

2
∑n

i=1 d2
i

}

.

Working with −Xk gives a similar inequality for P(−Sn > t) and adding the two we
get the statement in the lemma. ■

The power of Hoeffding’s inequality is that it is not an asymptotic statement
but valid for every finite n and finite t. Here are two consequences. Let Xi be i.i.d
bounded random variables with P(|X1|≤ d)= 1.

(1) (Large deviation regime) Take t = nδ to get

P
(
| 1
n

Sn −E[X1]|≥ u
)
=P (|Sn −E[Sn]|≥ u)≤ 2exp

{
− u2

8d2 n
}

.

This shows that for bounded random variables, the probability for the sam-
ple sum Sn to deviate by an order n amount from its mean decays exponen-
tially in n. This is called the large deviation regime because the order of the
deviation is the same as the typical order of the quantity we are measuring.

(2) (Moderate deviation regime) Take t = u
%

n to get

P (|Sn −E[Sn]|≥ δ)≤ 2exp
{
− u2

8d2

}
.

This shows that Sn is within a window of size
%

n centered at E[Sn]. In
this case the probability is not decaying with n, but the window we are
looking at is of a smaller order namely,

%
n, as compared to Sn itself, which

is of order n. Therefore this is known as moderate deviation regime. The
inequality also shows that the tail probability of (Sn−E[Sn])/

%
n is bounded

by that of a Gaussian with variance d. More generally, if we take t = unα

with α ∈ [1/2,1), we get P (|Sn −E[Sn]|≥ unα)≤ 2e−
u2
2 n2α−1

As Hoeffding’s inequality is very general, and holds for all finite n and t, it is not
surprising that it is not asymptotically sharp. For example, CLT will show us that
(Sn −E[Sn])/

%
n d→ N(0,σ2) where σ2 = Var(X1). Since σ2 < d, and the N(0,σ2) has

tails like e−u2/2σ2
, Hoeffding’s is asymptotically (as u →∞) not sharp in the moderate

regime. In the large deviation regime, there is well studied theory. A basic result
there says that P(|Sn−E[Sn]| > nu)≈ e−nI(u), where the function I(u) can be written
in terms of the moment generating function of X1. It turns out that if |Xi| ≤ d,
then I(u) is larger than u2/2d which is what Hoeffding’s inequality gave us. Thus
Hoeffding’s is asymptotically (as n →∞) not sharp in the large deviation regime.

2.14. Random series with independent terms

In law of large numbers, we considered a sum of n terms scaled by n. A natural
question is to ask about convergence of infinite series with terms that are indepen-
dent random variables. Of course

∑
Xn will not converge if Xi are i.i.d (unless Xi = 0

a.s!). Consider an example.

Example 2.46. Let an be i.i.d with finite mean. Important examples are an ∼ N(0,1)
or an = ±1 with equal probability. Then, define f (z) = ∑

n anzn. What is the ra-
dius of convergence of this series? From the formula for radius of convergence


